Stool microbiome composition reflects post-menstrual age in preterm infants and differs between infants with and without typical development

Daniel Beiting, PhD
Assistant Professor of Pathobiology
Technical Director; Center for Host-Microbial Interactions
University of Pennsylvania
School of Veterinary Medicine

web: hostmicrobe.org
twitter: @hostmicrobe
Email: beiting@upenn.edu

COI disclosure

I am a paid scientific consultant for Astarte Medical

Study design

3024 samples collected from 267 babies across 3 sites

- shotgun metagenomics on every sample
- generated ~12M paired-end reads/sample
- taxonomic and functional profiling

- ~ 10 samples/baby
- ~36% have growth failure
 (≤ -1.2 Z-score from birth to discharge)

- WashU St. Louis (Misty Good)
- Brigham and Women's (Kate Gregory)
- Newcastle University (Nicholas Embleton)

Analysis is a work-in-progress.

Completed for ~ 900 samples from 86 babies.

Objective

Can the preterm infant gut microbiome be used to predict gut health and identify infants at risk for growth failure?

Random forest <u>classifier</u>

Typically developing (TD) vs non-typically developing (NTD)

Train RF model on 70% of data.

Test on full dataset

		Predicted		
<u></u>		NTD	TD	
Actual	NTD	358 (true +)	13 (false -)	
	TD	14 (false +)	448 (true -)	
97% accuracy				

Open questions

How robust is this model?

How early can accurate predictions be made?

Could key taxa be useful as a biomarker panel?

Increasing important to classifier

Species	Mean decrease in accuracy
Bifidobacterium_bifidum	0.067498595
Escherichia_coli	0.045797017
Lactobacillus_acidophilus	0.027465074
Bifidobacterium_longum	0.020643724
Staphylococcus_haemolyticus	0.019453886
Escherichia_unclassified	0.018946799
Propionibacterium_avidum	0.016515139
Bifidobacterium_animalis	0.015575921
Enterobacter_cloacae	0.012367224
Enterococcus_durans	0.009400138
Bifidobacterium_breve	0.009173547
Veillonella_unclassified	0.00897734
Veillonella_parvula	0.007807973
Klebsiella_oxytoca	0.007379208
Enterococcus_faecalis	0.00660995
Actinomyces_urogenitalis	0.006561894
Staphylococcus_lugdunensis	0.006337833
Klebsiella_pneumoniae	0.005498788
Streptococcus_thermophilus	0.005469943
Lactococcus_garvieae	0.004944994
Enterococcus_faecium	0.004306466
Citrobacter_koseri	0.004274305
Lactococcus_lactis	0.003944025
Pseudomonas_aeruginosa	0.003194776
Streptococcus_vestibularis	0.003104751

Random forest regression

Microbiome as predictor of post-menstrual age (PMA)

Predicted PMA (based on microbi

Species Mean decrease in accuracy Finegoldia_magna 0.067498595 Escherichia_unclassified 0.045797017 Veillonella_parvula 0.027465074 Enterococcus_faecalis 0.020643724 Propionibacterium_avidum 0.019453886 classifier Veillonella_unclassified 0.018946799 Staphylococcus_aureus 0.016515139 Rothia_mucilaginosa 0.015575921 Clostridium_difficile 0.012367224 Staphylococcus_epidermidis 0.009400138 oortant to Bifidobacterium_breve 0.009173547 Lactobacillus_rhamnosus 0.00897734 Veillonella_atypica 0.007807973 Streptococcus_salivarius 0.007379208

Open questions

Could a microbiota-by-age Z score be a useful predictor of at-risk infants?

What are the key age-discriminatory taxa for preterm infants, and could these be the basis for better probiotics?

microbiomeDB: large-scale integration of maternal and infant microbiome studies

Explore the Studies

News

24mo.#malnutrition #globalhealth #DataScience

Acknowledgements

Preterm Infant Microbiome

Beiting lab (UPenn)

- Elise Krespan, MS
- Megan Sullivan
- Alex Berry, *PhD*

Astarte Medical

- Tracy Warren
- Tammi Jantzen
- Arti Tandon
- Dave Ganetti
- Holly Clarke
- Donna Grace Karp
- Debbie Vorp
- Frank Malarkey
- Jutine Levesque
- Daniel Gallagher

Illumina Accelerator

- Courtney McCormick
- Amanda Cashin
- Poorya Sabounchi

Newcastle upon Tyne Hospital NHS Foundation Trust

- Nicholas Embleton, MD
- Janet Berrington, BMBS BMedSci MD FRCPCH

Newcastle University

Christopher Stewart, *PhD*

Brigham And Women's Hospital

- Katherine Gregory, PhD RN

Diversigen

- Emily Hollister, *PhD*
- Emmase Adams, *PhD*
- Daniell Demers
- Virginia Requelme
- Tasha Santiago-Rodriguez

MicrobiomeDB project

Univ. Penn & Univ. of Georgia

- EuPathDB group
- David Roos, PhD
- Wojtek Bazant
- John Brestelli